# What is the corresponding snap-down voltage (i.e. the maximum driving voltage without snap-down effect) Vmax=? Can the micromirror be driven to remain equilibrium at a torsional angle θ where θsnap<θ< θmax? Why?

Figure 4. Schematic diagram of the cross-section of the micromirror 1). Find the inertial momentum (It) of the torsional beam. 2). Find the torsional stiffness of one section of torsional beam (St1). 3). There are two sections of torsional beams in this device. Are they connected in parallel or in series? Find the total torsional stiffness of both torsional beam sections (St_tot). 4). What is the nominal maximum allowed torsional angle θmax=? (in unit of degree) 5). In order to achieve a torsional angle of θ=2º, what is the required driving voltage Vt applied between the micromirror and bottom left driving electrode? (Hint: first find normalized rotation angle max/ ). 6). Ignore a1 (i.e. assume α=0), calculate the snap-down angle θsnap of the micromirror. What is the corresponding snap-down voltage (i.e. the maximum driving voltage without snap-down effect) Vmax=? Can the micromirror be driven to remain equilibrium at a torsional angle θ where θsnap<θ< θmax? Why? 5. (15’) A (100) silicon wafer has initial native oxide layer of 0.05µm (thickness). Assume one hour dry oxidation at 1100oC is followed by 6 hours wet oxidations at 1100oC for this Si wafer. Ignore the effect of initial rapid growth regime, use Deal-Grove model to calculate oxide thickness for each step (dry oxidation and wet oxidation) of this Si wafer. What is the total thickness of Si material consumed in the surface due to thermal oxidation in both steps? For (100) Si wafer at T=1100 oC, the following data is given: dry oxidation: A=0.1396µm, B=0.0236µm2/hr, wet oxidation: A=0.1827µm, B=0.5289µm2/hr. Due on 02/27/2018, Tuesday in class.

a2

h

a1

a

substrate

bottom electrodes

mirror