Effect of particle size on phase transition entropy

Fig. 8. The relation between thephase transition enthalpy and the reciprocal of the particle sizes of BaTiO3 nanoparticles.

264 W. Zhang et al. / Powder Technology 308 (2017) 258–265

5. Conclusions

In conclusion, the general equation of phase transition thermody- namics of nanoparticles derived herein provides a foundation and guid- ance for the further research of the phase transition behavior. The Eqs. (20), (21) and (23) were derived based on the above general equation and a thermodynamic model of crystal transition. Furthermore, the re- lation between the temperature at the maximum rate of phase transi- tion and the particle size was interpreted by Eq. (37). The results show that the phase transition enthalpy, the phase transition entropy, the phase transition temperature and the temperature at themaximum rate of phase transition decrease with the decrease of particle size, and are linearly related to the reciprocal of particle size, respectively. This theory can quantitatively describe the size-dependent phase transition behavior of nanoparticles. The experimental results of phase transition for nano-BaTiO3 are consistent well with the above theory relations.


We are thankful to the National Natural Science Foundation of China (No. 21373147 and No. 21573157).

0.004 0.005 0.006 0.007 0.008






Fig. 9. The relation between the phase transition entropy and the reciprocal of the sizes of nano-BaTiO3.


[1] L.P. Wang, Q.F. Li, C. Wang, X.Z. Lan, Size-dependent phase behavior of the hexadecane–octadecane system confined in nanoporous glass, J. Phys. Chem. C 118 (2014) 18177–18186.

[2] J. Zhang, Y. Zheng, D. Zhao, S. Yang, L. Yang, Z. Liu, R. Zhang, S. Wang, D. Zhang, L. Chen, Ellipsometric study on size-dependent melting point of nanometer-sized in- dium particles, J. Phys. Chem. C (2016).

[3] G.K. Goswami, K.K. Nanda, Size-dependent melting of finite-length nanowires, J. Phys. Chem. C 114 (2010) 14327–14331.

[4] K. Sabyrov, N.D. Burrows, R.L. Penn, Size-dependent anatase to rutile phase transfor- mation and particle growth, Chem. Mater. 25 (2012) 1408–1415.

[5] J.B. Rivest, L.K. Fong, P.K. Jain, M.F. Toney, A.P. Alivisatos, Size dependence of a tem- perature-induced solid-solid phase transition in copper (I) sulfide, J. Phys. Chem. Lett. (2011).

[6] W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, Phase transition in PbTiO3 ultrafine particles of different sizes, J. Phys. Condens. Matter 5 (6) (1998) 2619–2624.

[7] W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phenomenological study of the size ef- fect on phase transition in ferroelectric particles, Phys. Rev. B Condens. Matter 50 (1994) 698–703.

[8] Y.G. Wang, W.L. Zhong, P.L. Zhang, Surface effects and size effects on ferroelectrics with a first-order phase transition, Phys. Rev. B Condens. Matter 53 (1996) 11439–11443.

[9] Y.G.Wang,W.L. Zhong, P.L. Zhang, Surface and size effects on ferroelectric filmswith domain structures, Phys. Rev. B Condens. Matter 51 (1995) 5311–5314.

[10] R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 pow- ders prepared by a combustion-like process, J. Solid State Chem. 213 (2014) 57–64.

[11] D. Prabhu, A. Narayanasamy, K. Shinoda, B. Jeyadeven, J.M. Greneche, K. Chattopadhyay, Grain size effect on the phase transition temperature of nanostruc- tured CuFe2O4, J. Appl. Phys. 109 (2011) 013532–013536.

[12] B. Jiang, L.A. Bursill, Phenomenological theory of size effects in ultrafine ferroelectric particles of lead titanate, Phys. Rev. B 60 (1999) 9978–9982.

[13] Z.X. Cui, M.Z. Zhao, W.P. Lai, Y.Q. Xue, Thermodynamics of size effect on phase transition temperatures of dispersed phases, J. Phys. Chem. C 115 (2011) 22796–22803.

[14] J. Zhang, M. Li, Z. Feng, J. Chen, C. Li, U.V. Raman, Spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk, J. Phys. Chem. B 110 (2006) 927–935.

[15] M.R. Kamal, R. Lai-Fook, N.R. Demarquette, Interfacial tension in polymermelts. Part II: effects of temperature and molecular weight on interfacial tension, Polym. Eng. Sci. 34 (2004) 1834–1839.

[16] R.H. Perry, D.W. Green, Perry’s Chemical Engineers’ Handbook, eighth ed. McGraw- Hill, New York, 2008 2–136.

[17] C.C. Yang, M.X. Xiao, W. Li, Q. Jing, Size effects on Debye temperature, Einstein tem- perature, and volume thermal expansion coefficient of nanocrystals, Solid State Commun. 139 (2006) 148–152.

[18] C.L. Yaws, Chemical Properties Handbook, 1th ed. McGraw-Hill Book Co., Singapore, 1999 212–235.

[19] M. Shima, J. Thachil, S.C. Nair, Synthesis and size control of tetragonal barium tita- nate nanopowders by facile solvothermal method, J. Am. Ceram. Soc. 95 (2012) 2429–2434.

[20] H.F. Guo, X.T. Zhang, B. Liu, Y.C. Li, Y.B. Huang, Z.L. Du, Preparation of nanometer- sized batio3 crystallites by sol-gel method and size effects on structure, Acta Phys. -Chim. Sin. 20 (2004) 164–168.

[21] X. Li, H. Tang, X. Lu, S. Lin, L. Shi, Z. Huang, Reaction kinetic parameters and surface thermodynamic properties of Cu2O nanocubes, Entropy 17 (2015) 5437–5449.

[22] Y.L. Du, M.S. Zhang, Q. Chen, Z.R. Yuan, Z. Yin, Q.A. Zhang, Size effect and evidence of a size-driven phase transition in Bi4Ti3O12 nanocrystals, Solid State Commun. 124 (2002) 113–118.

[23] H.M. Lu, P.Y. Li, Y.N. Huang, X.K. Meng, X.Y. Zhang, Q. Liu, Size-dependent curie tran- sition of Ni nanocrystals, J. Appl. Phys. 105 (023516) (2009) 1–3.

[24] D. Banerjee, S.K. Das, S.V. Thakare, P.Y. Nabhiraj, R. Menon, R.K. Bhandari, K. Krishnan, Study of surface-bulk mass transport and phase transition in nano- TiO2 using hyperfine interaction technique, J. Phys. Chem. Solids 71 (2010) 983–987.

[25] S. Sawai, H. Yamada, A. Iba, H. Tanaka, Y. Matsumoto, K. Tomita, Size effect on crystal structure and phase transition of potassiumNiobate, Ferroelectrics 433 (2012) 45–52.

[26] V.A. Reddy, N.P. Pathak, R. Nath, Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles, J. Alloys Compd. 543 (2012) 206–212.

[27] Y.G. Wang,W.L. Zhong, P.L. Zhang, Size effects on the curie temperature of ferroelec- tric particles, Solid State Commun. 92 (1994) 519–523.

[28] P.W. Atkins, J. De Paula, Atkin’s Physical Chemistry, Higher Education Press, 2006, pp. 961.

[29] Q. Fu, Z. Cui, Y. Xue, Size dependence of the thermal decomposition kinetics of nano- CaC2O4: a theoretical and experimental study, Eur. Phys. J. Plus 130 (2015) 1–14.

[30] S.L. Lai, J.Y. Guo, V.V. Petrova, G. Ramanath, L.H. Allen, Size-dependent melting prop- erties of small tin particles: nanocalorimetric measurements, Phys. Rev. Lett. 77 (1996) 99–102.

[31] H.M. Lu, F.Q. Han, X.K. Meng, Size-dependent thermodynamic properties of metallic nanowires, J. Phys. Chem. B 112 (2008) 9444–9448.

[32] F. Xu, W. Zhou, A. Navrotsky, Cadmium selenide: surface and nanoparticle energet- ics, J. Mater. Res. 26 (2011) 720–725.